Photochemistry and photoprotection of 'Gem' avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity.

Affiliation

Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa; Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa. Electronic address: [Email]

Abstract

A reduction in photosynthesis results in a reduced CO2 assimilation rate and availability of carbohydrates essential for fruit growth and development. This study determined photosynthetic efficiency and photoprotection mechanisms within and outside leaf canopy positions in 'Gem' avocado orchards and their relationship with avocado fruit maturity. The study was conducted in a commercial orchard at Everdon Estate in KwaZulu-Natal, South Africa. A total of 15 eight-year-old avocado trees (cv. Gem) were selected in a completely randomised design with three replicates, with each replicate consisting of five trees. Data were collected bi-weekly on photosynthetic rate (A), effective quantum efficiency of photosystem II (ϕPSII), stomatal conductance (gs), transpiration rate (T), electron transport rate (ETR), minimum fluorescence (Fo'), maximum fluorescence (Fm'), variable fluorescence (Fv'), intrinsic water use efficiency (WUEi), instantaneous water use efficiency (WUEins), intercellular CO2 concentration (Ci) and photochemical quenching (qP) from full bloom to fruit physiological maturity (∼25 % dry matter content (DM)). The results showed that leaves from the outside position had higher A (29.46 mol CO2 m-2s-1); gs (0.078 mol CO2 m-2s-1); ΦPS II (0.32); and qP (0.52) compared to those within the canopy position with lower A (19.27 mol CO2 m-2s-1); gs (0.0037 mol CO2 m-2s-1); ΦPS II (0.044) and qP (0.075), respectively. Contrastingly, chlorophyll fluorescence and photoprotection parameters were higher within the canopy than on the outside, suggesting that the greater proportion of energy accumulated within the canopy was used for photoprotection other than photochemistry. Photosynthetic rate (A), gs, Ci, T, WUEi and WUEins, correlated significantly with mesocarp dry matter (DM), while all other parameters correlated poorly. The high photosynthetic efficiency of leaves from outside the canopy resulted in an average DM of 28.9 % compared to 26.9 % of fruit within the canopy. The present findings suggest that reduced photosynthetic efficiency of 'Gem' avocado within the canopy position does not compromise fruit DM by reserving more energy for photoprotection; however, it delays maturity by about two weeks.

Keywords

Avocado maturity,Canopy positions,Dry matter content,Photoprotection,Photosynthetic efficiency,

OUR Recent Articles