Proximity labeling reveals novel interactomes in live Drosophila tissue.

Affiliation

Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA [Email]

Abstract

Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 μm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.

Keywords

APEX,Actin cytoskeleton,Drosophila oogenesis,Mass spectrometry,Protein-protein interaction,Proximity labeling,Ring canal,

OUR Recent Articles