RNA sequencing revealing the role of AMP-activated protein kinase signaling in mice myocardial ischemia reperfusion injury.

Affiliation

Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China. Electronic address: [Email]

Abstract

Long non-coding RNAs (lncRNA) and circular RNAs (circRNA) that sponge miRNAs could indirectly regulate gene expression, contributing to certain biological processes. This study aimed to investigate the role of non-coding RNAs in the pathogenesis of myocardial ischemia reperfusion-injury (MIRI). MIRI in male C57B/6J mice was induced by left anterior descending coronary artery ligation occlusion for 30 min, and 4 h of reperfusion. RNA sequencing was performed to obtain the mRNA and non-coding RNA expression profiles of the MIRI and sham groups. Bioinformatic methods were used to analyze the co-expression RNAs, miRNA binding sites and competitive endogenous RNA (ceRNA) pairs. Differentially expressed RNAs were identified with a cutoff fold change > 2 and p < 0.05. A total of 64 mRNAs were upregulated and 98 mRNAs were downregulated, and 10 lncRNAs were upregulated and 10 lncRNAs were downregulated. All altered (p < 0.05) mRNAs were selected for gene ontology and pathway analysis. The AMP-activated protein kinase (AMPK) signaling pathway was enriched in the downregulated genes, and the activation of AMPK was confirmed by western blotting. The lncRNA co-expression network and ceRNA network base on genes in AMPK signaling pathway were then constructed, revealing that ENSMUST00000147762.7 and TUCP_000184 might be key regulators in MIRI induced AMPK activation. The expression levels of AMPK signaling-related RNAs and those involved in the ceRNA network were validated using qRT-PCR. Overall, this study identified potential new targets on AMPK signaling in MIRI.

Keywords

Cellular signaling,Competitive endogenous RNA,Myocardial ischemia reperfusion injury,Non-coding RNA,RNA profiling,