Responses of riparian forests to flood irrigation in the hyper-arid zone of NW China.

Affiliation

Alax Desert Eco-Hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Eco-Hydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Hydrology and Water Resources Engineering Research Center, Lanzhou 730000, China. Electronic address: [Email]

Abstract

Knowledge of forest water use is crucial to water resources managers, especially in arid environments. Flood irrigation has sometimes been used to ameliorate forest decline, however, there has only been limited research on vegetation responses to these interventions. We undertook a study to quantify evapotranspiration (ET) and its components, transpiration (T) and evaporation (E), of two Populus euphratica Oliv. stands (MA: middle-aged and OA: old-aged) with and without flood irrigation in the lower Heihe River Basin of NW China. ET and T were measured using eddy covariance and sap flow methods, respectively. Understory E was estimated by difference. Annual ET was 766.4 mm in the MA stand and 532.5 mm in the OA stand with an average of 4.2 and 2.9 mm d-1 during the growing season, respectively. ET of the MA stand was 44% higher than that of the OA stand, with contributions of 28% and 16% from E and T. Despite stand density, leaf area index and canopy cover being higher in the MA than OA stand sapwood area within the two stands was similar (MA 6.04 m2 ha-1 and OA 6.02 m2 ha-1). We hypothesised lower understory E and a lower E to ET ratio in the MA stand than OA stand. However, E was approximately 63% of ET in both stands. Therefore, we conclude that differences in ET, T and E were mainly associated with the flood irrigation. This was further supported by the comparable ET between the OA stand and the other studies in arid regions of Central Asia. In conclusion, flood irrigation has a less significant effect on canopy water use (T) than understory E suggesting alternatives to flood irrigation might be more appropriate in this water-limited ecosystem.

Keywords

Eddy covariance,Evapotranspiration,Flood irrigation,Hyper-arid zone,Riparian forests,Sap flow,