Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae.


State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China. Electronic address: [Email]


Pharmaceutical and Personal Care Products (PPCPs) removal coupling with bioenergy production by microalgae has attracted growing attention. However, the biological interactions between PPCPs and microalgae are unclear during microalgal biosorption and biodegradation of PPCPs. In this study, an optimal ciprofloxacin (CIP) and sulfadiazine (SDZ) removal efficiency were achieved 100% and 54.53% with carbohydrate productivity of >1000 mg L-1 d-1 by Chlamydomonas sp. Tai-03, respectively. The elimination routes indicated that CIP removal was mainly achieved by biodegradation (65.05%) whereas SDZ was mainly removed by photolysis (35.60%). The visualization evidence of microscopic imaging Raman spectrometer supported the favorable biosorption of CIP due to its positive charge (+10.20 mV). Meanwhile, the tendency for gradual reduction of CIP in extracellular polymeric substances (EPS) indicated that suspended microalgal cell facilitated CIP uptake and biodegradation. Furthermore, photolysis and biodegradation pathways were thoroughly analyzed to demonstrate that intermediates were less toxic and had no adverse effect on the subsequent ethanol conversion. This study provides valuable information for the development of a novel microalgal PPCPs removal. These findings reveal the possible biological mechanisms of biosorption and biodegradation of PPCPs in microalgae, which could further enhance the feasibility of microalgal applications for simultaneous PPCPs remediation and alternative energy production.


Biodegradation mechanisms,Biosorption,Elimination routes,Extracellular polymeric substances,Microalgae,Pharmaceutical and personal care products,

OUR Recent Articles