Robust Activity of Avapritinib, Potent and Highly Selective Inhibitor of Mutated KIT, in Patient-derived Xenograft Models of Gastrointestinal Stromal Tumors.

Affiliation

Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium. [Email]

Abstract

Gastrointestinal stromal tumors (GIST) are commonly treated with tyrosine kinase inhibitors (TKI). The majority of patients with advanced GIST ultimately become resistant to TKI due to acquisition of secondary KIT mutations, whereas primary resistance is mainly caused by PDGFRA p.D842V mutation. We tested the activity of avapritinib, a potent and highly selective inhibitor of mutated KIT and PDGFRA, in three patient-derived xenograft (PDX) GIST models carrying different KIT mutations, with differential sensitivity to standard TKI.Experimental Design: NMRI nu/nu mice (n = 93) were transplanted with human GIST xenografts with KIT exon 11+17 (UZLX-GIST9 KIT 11+17 ), exon 11 (UZLX-GIST3 KIT 11 ), or exon 9 (UZLX-GIST2B KIT9 ) mutations, respectively. We compared avapritinib (10 and 30 mg/kg/once daily) versus vehicle, imatinib (50 mg/kg/bid) or regorafenib (30 mg/kg/once daily; UZLX-GIST9 KIT11+17 ); avapritinib (10, 30, 100 mg/kg/once daily) versus vehicle or imatinib [UZLX-GIST3 KIT11 ]; and avapritinib (10, 30, 60 mg/kg/once daily) versus vehicle, imatinib (50, 100 mg/kg/twice daily), or sunitinib (40 mg/kg/once daily; UZLX-GIST2B KIT9 ).