S,N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: Design, characterization and performance.

Affiliation

Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address: [Email]

Abstract

In this work, new detection route for ascorbic acid was designed. First, highly luminescent sulfur and nitrogen doped graphene quantum dots (S,N-GQDs) were prepared via simple hydrothermal method using citric acid and thiourea as the C, N and S sources respectively. The prepared S,N-GQDs are characterized by XRD, HRTEM, FTIR, EDS and PL. Investigations showed that prepared S,N-GQDs have a good photostability and excitation-dependent emission fluorescence. Prepared S,N-GQDs showed maximum excitation wavelength and emission wavelength at 400 and 462 nm, respectively. In the following, prepared S,N-GQDs were applied as a photoluminescence probe for detection of ascorbic acid (AA). The designed sensor was based on "off-on" detection mode. The developed sensor had a linear response to AA over a concentration range of 10-500 μM with a detection limit of 1.2 μM. The regression equation is Y = 0.0014 X + 1.2036, where Y and X denote the fluorescence peak intensity and AA concentration, respectively.

Keywords

Fluorescence sensor,Graphene quantum dots,Nanostructures,Quantum confinement,Quenching,Water-soluble vitamin,

OUR Recent Articles