Sex differences in the effects of early life stress exposure on mast cells in the developing rat brain.

Affiliation

Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA. Electronic address: [Email]

Abstract

Early life stress leads to long lasting effects on behavior. Neuroimmune cells have been implicated as key mediators of experience-induced changes in brain and behavioral development, in that they are highly responsive to stress. Mast cells are one such type of neuroimmune cell, but little is known about their role in brain development or following early life stress. Here, we assessed the impact of three different early life stress exposure paradigms on mast cell dynamics in the developing brain of male and female rats, focusing on the hippocampus and hypothalamus, where most mast cells reside. We found that exposure to two weeks of chronic variable stress during gestation led to increased mast cell number and activation in the female offspring hypothalamus on the day of birth. Acute exposure to maternal separation stress on postnatal day (PN) 2 led to significant decreases in mast cells within the hypothalamus and hippocampus of females, but not males. In contrast, one week of exposure to brief daily maternal separation stress (e.g., handling), increased mast cell numbers in the female, but not male, hippocampus. We found significant sex differences in mast cell number and activation, including males having more mast cells than females in the hippocampus on the day of birth and males having significantly more degranulated mast cells on PN11. Thus, mast cells may be an unappreciated mediator of sex-specific brain development in response to early life perturbations.