Short communication: Bioinformatics-based mining of novel gene targets for identification of Cronobacter turicensis using PCR.

Affiliation

State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China. Electronic address: [Email]

Abstract

Cronobacter turicensis is a food-borne pathogen found in dairy products. It has been reported to cause bacteremia and enteritis in immunocompromised people, especially infants. Cronobacter turicensis has been isolated from various food sources, and contaminated powdered infant formula was found to be the most common source of infection among infants. Although some gene targets are used for the identification of C. turicensis, they are not specific at the species level. In this study, we analyzed the genome sequence of C. turicensis by bioinformatics and identified 13 specific gene targets. Primer sets targeting these sequences were designed and selected based on their specificity. Finally, primer set CT11, targeting gene CTU_19580, which codes for a hypothetical protein, was selected for development of the PCR assay because it alone produced positive PCR results for C. turicensis. To our knowledge, this is the first time that this gene target has been used to develop PCR detection assays for C. turicensis. The specific PCR assay had detection limits as low as 760 fg/µL for genomic DNA (approximately 158 copies/μL of DNA) and could detect C. turicensis in powdered infant formula with initial cell concentrations as low as 8.5 cfu per 10 g of powdered infant formula after 10 h of enrichment. Thus, this PCR assay is highly sensitive and can be used for rapid detection of C. turicensis.

Keywords

Cronobacter turicensis,PCR detection,bioinformatics,gene target,