Simplex-Lattice Hydration Prediction and Microstructure Verification of Cementitious Systems.


Department of Civil Engineering, King Saud University, Riyadh 800-11421, Saudi Arabia. [Email]


In this investigation, the age-dependent hydration development of blended pastes containing Portland cement (PC), pulverized fuel ash (PFA) and silica fume (SF) was assessed by quantifying the amount of CH and non-evaporable water using thermo-gravimetric analysis (TGA). Microstructure was investigated using scanning electron microscope (SEM). It was observed that the amount of liberated CH increases up to three-days in PC-PFA binary blended pastes, after which it progressively decreases and this reduction was proportional to the PFA dosage. The introduction of SF to PC-PFA binary mixtures to form ternary blended pastes has caused an early reduction of CH at one day where the majority of SF has been consumed during the first seven-days. The incorporation of 10% SF to PC-PFA pastes altered the low rate of hydration at early age. In addition, the presence of PFA showed insignificant influence on the non-evaporable water content until three-days then its effect became significant after seven-days. On the other hand, SF increased the non-evaporable water content from early ages up to seven-days. However, beyond 28 days, the presence of SF did not exhibit further pozzolanic activity. Furthermore, the ternary blended systems significantly increased the non-evaporable water content within three to seven days compared to the reference paste. Moreover, prediction nonlinear models of these hydration parameters were developed using the simplex-lattice design and validated against the experimental results. The latter have been further supported with SEM microstructural analysis showing good agreement between the predicted and realistic hydration.


PFA,blended cement,hydration,silica fume,simplex-lattice design,thermo-gravimetric analysis,

OUR Recent Articles