Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry.

Affiliation

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States. Electronic address: [Email]

Abstract

ADP-ribosylation is a protein post-translational modification that is critically involved in a wide array of biological processes connected to cell stress responses. Enzymes known as poly-ADP-ribose polymerases (PARPs) catalyze the addition of the ADP-ribose units to amino acids with various side chain chemistries. In particular, the PARP family member PARP1 is responsible for the modification of a large number of proteins and is involved in initiation of the DNA damage response, although the mechanisms through which PARP1 functions are still incompletely understood. The analysis of protein ADP-ribosylation is challenging because PARylation is a low-abundance, labile and heterogeneous protein modification. Recently, we developed an integrative proteomic platform for the site-specific analysis of protein ADP-ribosylation on Asp and Glu residues. Herein, we describe the method, and demonstrate its utility in quantitative characterization of the human Asp- and Glu-ADP-ribosylated proteome.

Keywords

ADP-ribosylation,Cancer,DNA damage response,NAD+ metabolism,PARP,

OUR Recent Articles