Smartphone colorimetric determination of hydrogen peroxide in real samples based on B, N, and S co-doped carbon dots probe.


Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China. [Email]


In this paper, we report the use of a smartphone and B, N, and S co-doped carbon dots (BNS-CDs) as a promising peroxidase mimic to quantify hydrogen peroxide (H2O2). The synthesized BNS-CDs exhibited excellent peroxidase-like activity to catalyze the reaction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2 to generate a blue oxide product (ox-TMB) with maximum absorption at 652 nm. Steady-state kinetic analysis demonstrated that the BNS-CDs showed much higher affinity than natural horseradish peroxidase (HRP) for H2O2 due to their small size and larger specific surface area. A smartphone colorimetric readout device was employed to record the RGB (red green blue) value of the ox-TMB solution via the Android application Color Grab for quantitative detection. A good linear relationship (R2 = 0.9970) between the H2O2 concentration and |R-Rblank| value was obtained in the range of 3-30 μM with a limit of detection (LOD) of 0.8 μM. The current method was successfully applied to determine H2O2 in mouthwash and milk with recoveries of 92.70-108.30%. The developed assay is a promising portable detection platform for H2O2 with good sensitivity and selectivity, simple operation, fast response, and low cost. Graphical abstract.


Carbon dots,Hydrogen peroxide,Peroxidase,RGB,Smartphone,TMB,

OUR Recent Articles