Solid-phase extraction of nerve agent degradation products using poly[(2-(methacryloyloxy)ethyl)trimethylammonium chloride] thin films.

Affiliation

Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea. Electronic address: [Email]

Abstract

In this study, a simple solid-phase extraction (SPE) technique was developed to extract organophosphonic acids as degradation products of nerve agents from aqueous samples for identification by instrumental analyses such as FT-IR, TOF-SIMs and GC-MS. To selectively extract the organophosphonic acids, we synthesized an anion exchange polymer film on a gold plate using surface-initiated controlled radical polymerization with 2-[(methacryloyloxy)ethyl]trimethylammonium chloride. Extraction of the organophosphonic acids onto the plates was successfully confirmed by polarized angle fourier transformation-infra red (FT-IR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry analyses. The limit of detection of the developed SPE method satisfied the detection limit of Chemical Warfare Agents verification criteria by FT-IR analysis. After optimization, the detection limit values were found to be between 0.1 and 0.4 µg mL-1, and the recovery ranged from 50% to 110% in aqueous solution containing various interference. In addition, the SPE process was successfully applied to the detection of pinacolyl methylphosphonic acid, the degradation product of soman, in the 35th Organization for Prohibition of Chemical Weapons proficiency test sample.

Keywords

Chemical warfare agent,Nerve agent,Solid-phase extraction,Surface functionalization,Surface-initiated controlled radical polymerization,

OUR Recent Articles