Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating.


Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China. Electronic address: [Email]


A nitrogen-doped metal organic framework (MOF) based porous carbon (C-(C3N4@MOF)) was produced by the carbonization of a graphitic carbon nitride (g-C3N4) templated MOF (NH2-MIL-125). The C-(C3N4@MOF) was then coated on a stainless steel wire by sol-gel technique to serve as a solid-phase microextraction (SPME) fiber coating. The coated fiber was studied for the extraction of fourteen organophosphorous pesticides (OPPs) from different fruit and vegetable samples followed by gas chromatography-mass spectrometer (GC-MS) detection. The C-(C3N4@MOF) coated fiber exhibited a high extraction capability for the OPPs. Both single factor optimization and response surface analysis (Box-Behnken Design) methods were implemented to optimize the experiment conditions for the extraction. The results indicated that the linear response for the fourteen OPPs was in the range from 0.69 to 3000 ng g-1 and the coefficients of determination (r2) ranged from 0.9981 to 0.9998. The limits of detection (LODs, S/N = 3) ranged from 0.23 to 7.5 ng g-1. The method recoveries (R) of the fourteen OPPs for spiked fruit and vegetable samples were between 82.6% and 118%, with the relative standard deviations (RSDs) varying from 2.8% to 11.7%. The fiber can be reused over 100 times without a significant loss of extraction efficiency.


Box-Behnken Design,Fruits,Gas chromatograph–mass spectrometer,Graphitic carbon nitride,Metal organic framework,Organophosphorous pesticides,Porous carbon,Solid-phase microextraction,Vegetables,

OUR Recent Articles