Survival of E. coli O157:H7, Salmonella Typhimurium, HAdV2 and MNV-1 in river water under dark conditions and varying storage temperatures.

Affiliation

Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt. Electronic address: [Email]

Abstract

The ability of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Human adenovirus serotype 2 (HAdV2) and Murine Norovirus 1 (MNV-1) to survive in river water at -20, 4, room temperature (~24 °C) and 37 °C, were evaluated under dark conditions. The tested surface water was obtained from the main Nile River in the Dokki area, Giza and sterilized by autoclaving. The pathogens were inoculated separately in the autoclaved river water. Each microcosm was sampled and the test microorganisms counted after zero (immediately following inoculation), 1, 7, 15, 30, 60, 90 and 120 days. Physicochemical parameters including pH, turbidity, electrical conductivity, dissolved oxygen, total dissolved solids, total alkalinity, biological oxygen demand, chemical oxygen demand, nitrates and nitrites, and sulphate, were also measured. For HAdV2, the highest decay rates were observed at 37 °C and room temperature compared to 4 and -20 °C. A similar trend was found for the MNV-1, although unlike the HAdV2, the decay rate was higher at -20 than at 4 °C. Also, 4 °C was the best temperature for the survival of MNV-1 (T90 = 76.9 days), E. coli O157:H7 (T90 = 103 days) and Salmonella Typhimurium (T90 = 105 days). The least survival of the pathogens, except MNV-1, was recorded at 37 °C. These results indicate that under dark conditions and low temperatures, enteric pathogens could be stable for extended periods. No significant statistical correlation was observed between the experimental temperatures and the infectivity of the viral particles. This study provided useful information about the stability of these pathogens in the Nile River water and could serve as an early warning when considering the water of the river for agricultural irrigation or household use in areas with limited or no access to potable water.

Keywords

Adenovirus,E. coli O157:H7,Norovirus,River water,Salmonella Typhimurium,Survival,