The Dose Response for Sprint Interval Training Interventions May Affect the Time Course of Aerobic Training Adaptations.


O'Brien Centre for Science, University College Dublin, D04 V1W8 Dublin, Ireland. [Email]


Low vs. high volume sprint-interval training (SIT) sessions have shown similar physiological benefits after 8 weeks. However, the dose response and residual effects of shorter SIT bouts (<10 s) are unknown. Following a 6-wk control period, 13 healthy inactive males were assigned to a low dose (LDG: n = 7) or high dose (HDG: n = 6) supervised 6-wk intervention: ×2/wk of SIT (LDG = 2 sets of 5 × 6 s ON: 18 s OFF bouts; HDG = 4-6 sets); ×1/wk resistance training (3 exercises at 3 × 10 reps). Outcome measures were tested pre and post control (baseline (BL) 1 and 2), 72 h post (0POST), and 3-wk post (3POST) intervention. At 0POST, peak oxygen uptake (VO2peak) increased in the LDG (+16%) and HDG (+11%) vs. BL 2, with no differences between groups (p = 0.381). At 3POST, VO2peak was different between LDG (-11%) and HDG (+3%) vs. 0POST. Positive responses for the intervention's perceived enjoyment (PE) and rate of perceived exertion (RPE) were found for both groups. Blood pressure, blood lipids, or body composition were not different between groups at any time point. Conclusion: LDG and HDG significantly improved VO2peak at 0POST. However, findings at 3POST suggest compromised VO2peak at 0POST in the HDG due to the delayed time course of adaptations. These findings should be considered when implementing high-dose SIT protocols for non-athletic populations.


Inactive populations,cardiorespiratory fitness,high intensity interval training,psychological indices,