The Effects of Clioquinol on P-glycoprotein Expression and Biometal Distribution in the Mouse Brain Microvasculature.


Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia. Electronic address: [Email]


Previous studies have demonstrated that the ionophore clioquinol (CQ), in conjunction with the biometals copper and zinc, increases the expression of P-glycoprotein (P-gp) in human cerebral microvascular endothelial (hCMEC/D3) cells. As P-gp expression and function at the blood-brain barrier (BBB) is of great interest regarding CNS drug access and endogenous toxin trafficking (e.g., amyloid beta), the present study assessed the in vivo translation of these previous in vitro findings. Swiss outbred mice received an 11-day treatment of CQ (30 mg/kg) by oral gavage, after which brain microvessel-enriched fractions (MEFs) and surrounding interfaces (subcortical brain tissue and plasma) were extracted. P-gp expression was quantified in the MEF, and biometal concentrations in all 3 compartments were assessed via inductively coupled plasma mass spectrometry. CQ treatment did not modify the expression of P-gp, nor copper or zinc concentrations in the brain MEF under this treatment regime. Metallomic analysis revealed, however, that CQ reduced potassium and magnesium levels in the brain MEF and also lowered brain iron levels. This study has shown that under this dosing regimen, CQ does not increase BBB P-gp expression in Swiss outbred mice, but that CQ facilitates redistribution of certain metal ions within the brain MEF, plasma, and brain parenchyma.


ABC transporter(s),P-glycoprotein,blood-brain barrier (BBB),central nervous system,efflux pump(s),

OUR Recent Articles