The Sommerfeld ground-wave limit for a molecule adsorbed at a surface.


Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. [Email] [Email]


Using a mid-infrared emission spectrometer based on a superconducting nanowire single-photon detector, we observed the dynamics of vibrational energy pooling of carbon monoxide (CO) adsorbed at the surface of a sodium chloride (NaCl) crystal. After exciting a majority of the CO molecules to their first vibrationally excited state (v = 1), we observed infrared emission from states up to v = 27. Kinetic Monte Carlo simulations showed that vibrational energy collects in a few CO molecules at the expense of those up to eight lattice sites away by selective excitation of NaCl's transverse phonons. The vibrating CO molecules behave like classical oscillating dipoles, losing their energy to NaCl lattice vibrations via the electromagnetic near-field. This is analogous to Sommerfeld's description of radio transmission along Earth's surface by ground waves.