The effect of chlorination degree and substitution pattern on the interactions of polychlorinated biphenyls with model bacterial membranes.


Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland. Electronic address: [Email]


Polychlorinated biphenyls (PCB) are persistent organic pollutants that due to their chemical resistivity and inflammability found multiple applications. In spite of the global ban for PCB production, due to their long half-lives periods, PCB accumulate in the soils, so effective bioremediation of the polluted lands is of crucial importance. Some of the 209 PCB congeners exhibit increased toxicity to soil bacteria and their presence impoverish the soil decomposer community and slows down the degradation of environmental pollutants in the soils. The exact mechanism of PCB antimicrobial activity is unknown, but it is strictly related with the membrane activity of PCB. Therefore, to shed light on these interactions we applied Langmuir monolayers formed by selected phospholipids as model bacterial membranes. In our studies we tested 5 PCB congeners differing in the degree of chlorination and the distribution of the chlorine substituents around the biphenyl frame. Special attention was paid to tetra-substituted PCB because of their increased presence in the environment and disubstituted PCB being their degradation products. To characterize the model membranes as Langmuir monolayers, we used surface pressure measurements, Brewster angle microscopy and Grazing Incidence X-ray Diffraction. It turned out that among the tetra-substituted PCB the ortho-substituted non-dioxin like compound was much more membrane destructive than the flat dioxin-like congener. On the contrary, among the di-substituted PCB the flat para-substituted 2,2'-dichlorobiphenyl turned out to exhibit high membrane activity.


Grazing incidence X-ray diffraction,Langmuir monolayers,Model bacterial membranes,Polychlorinated biphenyls,

OUR Recent Articles