The neural architecture of executive functions is established by middle childhood.


Department of Psychology, The University of Texas at Austin, United States. Electronic address: [Email]


Executive functions (EFs) are regulatory cognitive processes that support goal-directed thoughts and behaviors and that involve two primary networks of functional brain activity in adulthood: the fronto-parietal and cingulo-opercular networks. The current study assessed whether the same networks identified in adulthood underlie child EFs. Using task-based fMRI data from a diverse sample of N = 117 children and early adolescents (M age = 10.17 years), we assessed the extent to which neural activity was shared across switching, updating, and inhibition domains, and whether these patterns were qualitatively consistent with adult EF-related activity. Brain regions that were consistently engaged across switching, updating, and inhibition tasks closely corresponded to the cingulo-opercular and fronto-parietal networks identified in studies of adults. Isolating brain activity during more demanding task periods highlighted contributions of the dorsal anterior cingulate and anterior insular regions of the cingulo-opercular network. Results were independent of age and time-on-task effects. These results indicate that the two core brain networks that support EFs are in place by middle childhood, in agreement with resting-state findings of adultlike brain network organization. Improvement in EFs from middle childhood to adulthood, therefore, are likely due to quantitative changes in activity within these networks, rather than qualitative changes in the organization of the networks themselves. Improved knowledge of how the brain's functional organization supports EF in childhood has critical implications for understanding the maturation of cognitive abilities.


Children,Cingulo-opercular network,Executive function,Fronto-parietal network,fMRI,