The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage.

Affiliation

Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address: [Email]

Abstract

Compared to the control longans, hydrogen peroxide (H2O2)-treated longans exhibited higher index of pulp breakdown, higher fruit respiration rate, higher activities of pulp phosphohexose isomerase (PGI), succinate dehydrogenase (SDH), cytochrome C oxidase (CCO), ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO), but lower activity of pulp nicotinamide adenine dinucleotide kinase (NADK). H2O2-treated longans also exhibited lower total activities of pulp glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), lower levels of pulp NADP(H), but higher levels of pulp NAD(H). These data indicated that H2O2-stimulated longan pulp breakdown was owing to a decreased proportion of pentose phosphate pathway (PPP), the increased proportions of Embden-Meyerhof-Parnas pathway (EMP), tricarboxylic acid (TCA) cycle and cytochrome pathway (CCP) in total respiratory pathways. These findings further revealed that H2O2 could enhance respiration rate, and thus accelerate pulp breakdown occurrence and shorten the shelf life of longan fruit.

Keywords

Hydrogen peroxide,Longan fruit,Pulp breakdown,Pyridine nucleotide,Respiration rate,Respiratory metabolic crucial enzymes,Respiratory metabolic pathway,Respiratory terminal oxidases,

OUR Recent Articles