The thioredoxin (Trx) redox state sensor protein can visualize Trx activities in the light/dark response in chloroplasts.

Affiliation

Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan [Email]

Abstract

Thiol-based redox regulation via ferredoxin-thioredoxin (Trx) reductase/Trx controls various functions in chloroplasts in response to light/dark changes. Trx is a key factor of this regulatory system, and five Trx subtypes, including 10 isoforms, have been identified as chloroplast-localized forms in Arabidopsis thaliana These subtypes display distinct target selectivity, and, consequently, they form a complicated redox regulation network in chloroplasts. In this study, we developed a FRET-based sensor protein by combining CFP, YFP, and the N-terminal region of CP12, a redox-sensitive regulatory and Trx-targeted protein in chloroplasts. This sensor protein enabled us to monitor the redox change of chloroplast thioredoxin in vivo, and we therefore designated this protein "change in redox state of Trx" (CROST). Using CP12 isoforms, we successfully prepared two types of CROST sensors that displayed different affinities for two major chloroplast Trx isoforms (f-type and m-type). These sensor proteins helped unravel the real-time redox dynamics of Trx molecules in chloroplasts during the light/dark transition.

Keywords

FRET),biosensor,chloroplast,fluorescence,redox regulation,thioredoxin,

OUR Recent Articles