Thermo-separating polymer-based aqueous two-phase systems for the recovery of PEGylated lysozyme species.


Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico. Electronic address: [Email]


Fractionation of native, mono and di-PEGylated lysozyme was performed in 36 different polymer-polymer aqueous two-phase systems using UCON as a phase-forming component. After a discrete partition analysis, dextran 75 kDa-UCON, volume ratio 3, tie-line length 35% w/w; ficoll 70 kDa-UCON, volume ratio 1, tie-line length 45% w/w and a PEG 8 kDa-UCON volume ratio 3, tie-line length 65% w/w systems were selected for optimization via salt addition and to observe the behavior of the lysozyme species in mixtures. The dextran-UCON and the PEG-UCON systems with 75 mM NaCl showed effectiveness in separating 75% and 87% of mono-PEGylated lysozyme from the rest of the lysozyme species in the top and bottom phases, respectively. These results are an advancement in incorporating these extractions in different processes since the use of UCON simplifies the removal of the polymers, providing the opportunity of recycling it to the operation.


Aqueous two-phase systems,Lysozyme,PEGylated proteins,UCON,