Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects.

Affiliation

Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway. Electronic address: [Email]

Abstract

Antimicrobial peptides (AMPs) are the natural antibiotics recognized for their potent antibacterial and wound healing properties. Bare AMPs have limited activity following topical application attributable to their susceptibility to environment (hydrolysis, oxidation, photolysis), and wound (alkaline pH, proteolysis) related factors as well as minimal residence time. Therefore, the formulation of AMPs is essential to enhance stability, prolong delivery, and optimize effectiveness at the wound site. Different topical formulations of AMPs have been developed so far including nanoparticles, hydrogels, creams, ointments, and wafers to aid in controlling bacterial infection and enhance wound healing process in vivo. Herein, an overview is provided of the AMPs and current understanding of their formulations for topical wound healing applications along with suitable examples. Furthermore, future prospects for the development of effective combination AMP formulations are discussed. STATEMENT OF SIGNIFICANCE: Chronic wound infection and subsequent development of antibiotic resistance are serious clinical problems affecting millions of people worldwide. Antimicrobial peptides (AMPs) possess great potential in effectively killing the bacteria with minimal risk of resistance development. However, AMPs susceptibility to degradation following topical application limits their antimicrobial and wound healing effects. Therefore, development of an optimized topical formulation with high peptide stability and sustained AMP delivery is necessary to maximize the antimicrobial and wound healing effects. The present review provides an overview of the state-of-art in the field of topical AMP formulations for wound healing. Current developments in the field of topical AMP formulations are reviewed and future prospects for the development of effective combination AMP formulations are discussed.

Keywords

Antimicrobial peptide,Formulation,Infection,Topical application,Wound healing,

OUR Recent Articles