Transient DNA Occupancy of the SMC Interarm Space in Prokaryotic Condensin.

Affiliation

Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland; Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. Electronic address: [Email]

Abstract

Multi-subunit SMC ATPases control chromosome superstructure and DNA topology, presumably by DNA translocation and loop extrusion. Chromosomal DNA is entrapped within the tripartite SMCkleisin ring. Juxtaposed SMC heads ("J heads") or engaged SMC heads ("E heads") split the SMCkleisin ring into "S" and "K" sub-compartments. Here, we map a DNA-binding interface to the S compartment of E heads SmcScpAB and show that head-DNA association is essential for efficient DNA translocation and for traversing highly transcribed genes in Bacillus subtilis. We demonstrate that in J heads, SmcScpAB chromosomal DNA resides in the K compartment but is absent from the S compartment. Our results imply that the DNA occupancy of the S compartment changes during the ATP hydrolysis cycle. We propose that DNA translocation involves DNA entry into and exit out of the S compartment, possibly by DNA transfer between compartments and DNA segment capture.

Keywords

DNA loop extrusion,MukB,Rad50,SMC,Smc5,SmcScpAB,chromosome condensation,cohesin,condensin,kleisin,

OUR Recent Articles