Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO2.


University of Milan, Chemistry Department, Via Golgi 19, 20133 Milano, Italy; Consorzio INSTM, Firenze, Italy. Electronic address: [Email]


Sonochemistry is based on acoustic cavitation, which consist in the formation, growth, and implosive collapse of bubbles within a liquid. Collapsing bubbles generate localized hot spots, characterized by temperatures up to 5000 K and pressures up to 1800 atm. These extreme conditions allow producing a variety of nanostructured and amorphous materials, as well as they are advantageous for chemical processes. Ultrasound requires inexpensive equipment and fewer steps than conventional methods. Combining ultrasound and photocatalysis enhances the performance of the processes, reduces reaction time, avoids the use of extreme physical conditions and improves the photocatalytic materials properties increasing their activity. Here, we reported the positive effect of US in synthesizing Me-modified TiO2 (Me = Ag, Cu, Mn) for pollutants degradation in gas-phase; also, we proved the advantageous application of ultrasound for the photocatalytic removal of organic compounds in water. Ultrasound produced more efficient Me-doped TiO2, which showed higher activity in visible light. When combined with photocatalytic water treatment, the organic compounds degradation and mineralization increases.


Air purification,Drugs degradation,Metal NPs,Photocatalysis,Ultrasound,Water remediation,