Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo).

Affiliation

Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA; Department of Chemistry, The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA. Electronic address: [Email]

Abstract

Numerous studies on short term effects of copper-based nanomaterials on plants have been published, however investigations with plants grown in a complex soil medium are lacking. In this study Grey Zucchini (Cucurbita pepo) was grown in an environmental growth chamber using a 1:1 (v/v) potting mix native soil mixture amended with Kocide 3000, nCuO, bCuO, or Cu NPs. After 3 weeks Cu concentrations in the root, stem, and leaves of treated plants were significantly higher than control plants. This increase in Cu concentration did not adversely affect plant growth or chlorophyll production. The activity ascorbate peroxidase (APX) in the roots tissues of plants treated with Kocide 3000, nCuO, and bCuO decreased by at least 45%. Catalase (CAT) activity in root tissues of plants treated with 50 mg/kg of Cu NP decreased by 77%, while those treated at 200 mg/kg were reduced by 80%, compared to controls. The activity of APX and CAT in the leaves of all treated plants remained similar to control plants. Based on the endpoints used in this study, with the exception of a decrease in the accumulation of Zn and B in the roots, the exposure of zucchini to the tested copper compounds resulted in no negative effects.

Keywords

Environmental implications of nanotechnology,Nano-copper,Nano-copper oxide,Zucchini,

OUR Recent Articles