iTRAQ-based quantitative proteomic analysis provides insights into strong broodiness in Muscovy duck (Cairina moschata) combined with metabolomics analysis.


Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China.. Electronic address: [Email]


Much attention has been paid to the broodiness of the Muscovy duck, but the molecular mechanism of broodiness remains largely unknown. In this study, the ovary tissues of Muscovy ducks during the broody and laying periods were used to investigate differentially expressed proteins (DEPs) by the iTRAQ-based proteomics approach. A total of 335 DEPs were identified, including 139 up-regulated and 196 down-regulated proteins. Six proteins (APOV1, GAL, SAA, GNB5, VLDLR and CDK1) with higher changes in expression were selected, and these proteins are mainly involved in the pathways related to reproductive performance, such as Oocyte meiosis, and PI3K-Akt signaling pathway. Steroid biosynthesis was the most significantly enriched pathway by KEGG pathway enriched analysis. The qRT-PCR analysis was applied to verify the proteomic analysis. Meanwhile, metabolomics analysis found that several important differentially expressed metabolites (DEMs) (7-dehydrodesmosterol, 25-Hydroxyvitamin D3, 7-Dehydrocholesterol, Pregnanolone, Allopregnanolone and estrogen) that were also mainly involved in Steroid biosynthesis, Steroid hormone biosynthesis and Metabolic pathways. Crucially, the changes in the abundance of these metabolites are closely related to the changes in the protein abundance of proteins identified in the same pathway, and it is always the upstream key enzymes that influence the production of downstream metabolites.


Broodiness,Metabolomics,Muscovy duck,Ovary,Proteomics,iTRAQ,