Journal of Computational Chemistry & Molecular Modeling

ISSN: 2473-6260

Impact Factor: 0.827

VOLUME: 1 ISSUE: 1

Page No: 13-19

MOLECULAR DYNAMIC SIMULATIONS IN DIGLYCOLAMIDES –Eu(NO3)3 SYSTEM


Co-Authors

A.S. Suneesh, K.A. Venkatesan, M.P.Antony, P. R. Vasudeva Rao

Citation

K A Venkatesan, MOLECULAR DYNAMIC SIMULATIONS IN DIGLYCOLAMIDES

Abstract

Alkyl diglycolamides (DGAs) are promising extractants for the separation of trivalent actinides from nitric acid medium. Molecular dynamic simulations using AMBER force field have been performed on various alkyl derivatives diglycolamides to understand the fundamental property and conformation of DGA responsible for extraction of trivalent metal ions. Since the amidic (O1 and O2) and etheric oxygen donor atoms in DGA molecule coordinates with metal ions, the linear distance between O1-O3 atoms and the dihedral angle associated with O1-C1-C2-O2 and O2-C3-C4-O3 bonds present in DGAs were determined by MD simulations. The results obtained were correlated to the distribution ratio of americium (III). The average O1-O3 distance increased with increase of chain length and branching of alkyl group attached to amidic nitrogen atom of DGA. The extractant underwent remarkable change in conformation, prior to coordination with metal ions, to adopt a suitable conformation necessary for efficient complexation. Comparison of the results obtained from simulation and distribution ratios, our studies revealed that diglycolamides required an optimum O1 –O3 distance of 4.2 -5 Å and minimal reorientation of dihedral angles for efficient coordination with trivalent metal ions.

References

  1. Mathur JN, Murali MS, Nash KL, Actinide partitioning?A review, Solvent Extr. Ion Exch. 19: 357-362, 2001.

    View Article           
  2. Schulz WW, Horwitz EP, The TRUEX process and the management of liquid TRU waste. Sep. Sci. Technol. 23, 1191-1201: 1998.

    View Article           
  3. Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK, Aqueous partitioning of minor actinides by different processes, Sep. Purif. Rev. 40, 43-53: 2011.

    View Article           
  4. Modolo G, Amato L, Modolo G, Nannicini R, Madic C, Baron P, DIAMEX counter-current Extraction process for recovery of trivalent actinides from simulated High active concentrate, Sep. Sci. Technol. 42,439-452:2007.

    View Article           
  5. Berthon L, Morel JM, Zorz N, Nicol C, Virelizier H, Madic C, DIAMEX process for minor actinide partitioning: Hydrolytic and radiolytic degradation of malonamide extractants, Sep. Sci. Technol. 36,709-728:2001.

    View Article           
  6. Liu X, Liang J, Xu J, Simplified Chinese TRPO process to Extract and recover Trasuranium elements from High-level liquid waste. Solvent Extr. Ion Exch. 22,163-173:2004.

    View Article           
  7. Jianchen W, Chongli S, Hot test of Trialkyl phosphine oxide(TRPO) for removing actinides from Highly saline High-level liquid waste (HLLW), Solvent Extr. Ion Exch. 19,231-242:2001.

    View Article           
  8. Morita Y, Glatz JP, Kubota M, Koch L, Pagliosa G, Roemer K, Nicholl A, Actinide Partitioning from HLW in a continulus DIDPA extraction process by means of centrifugal extractors. Solvent Extr. Ion Exch.14,385-400:1996.

    View Article           
  9. Nakamura S, Akiba K, Transport of Europium(III) through supported liquid membrane containing diisodecylphosphoric acid, 24,673-686:1989.

  10. Ansari SA, Pathak PN, Manchanda VK, Hussain M, Prasad AK, Parmar VS, N,N,N'N'-Tetraoctyl Diglycolamide (TODGA), A promising extractant for actinide ?partitioning from high-level waste (HLW), Solvent Extr. Ion Exch. 23,463 ?479:2005.

    View Article           
  11. Magnusson D, Christiansen B, Glatz JP, Malmeck R, Modolo G, Purroy DS, Sore,l C, Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate, Solvent Extr. Ion Exch. 27,26-35:2009.

    View Article           
  12. Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK, Chemistry of diglycolamides: promising extractants for actinide partitioning, Chem. Rev. 112,751?1772:2012. PMid:22053797

    View Article      PubMed/NCBI     
  13. Vasudeva Rao PR, Kolarik Z, A review of third phase formation in extraction of actinides by neutral organophosphorus extractants, Solvent Extr. Ion Exch. 14,955-993:1996.

    View Article           
  14. Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Vasudeva Rao PR, Tuning the diglycolamides for modifier-free minor actinide partitioning, J. Radioanal. Nucl. Chem. 295,1283-1292:2012.

    View Article           
  15. Beudaert P, Lamare, V, Dozol JF, Troxler L, Wipff G, Theoretical studies on tri-n-butyl phosphate: md simulations in vacuo, in water, in chloroform, and at a water / chloroform interface, Solvent Extr. Ion Exch. 16,597 ? 618:1996.

    View Article           
  16. Suneesh AS, Ashok Kumar GVS, Gururaj K, Venkatesan KA, Valsa Kumar MC, Vasudeva Rao PR, Conformational and coalescence behaviour of trialkylphosphates in vacuum, water and dodecane, J. Mol. Model. 20, 1-8:2014. PMid:24493301

    View Article      PubMed/NCBI     
  17. Zheng H, Wu F, Wang B, Wu Y, Molecular dynamics simulation on the interfacial features of phenol extraction by TBP/dodecane in water, Comput. Theor. Chem. 970,66-72:2011.

    View Article           
  18. Hirata M, Guilbaud P, Dobler M, Tachimori S, Molecular dynamics simulations for the complexation of Ln3+ and UO22+ ions with tridentate ligand diglycolamide (DGA). Phys. Chem. Chem. Phys. 5,691-695:2003.

    View Article           
  19. Charbonnel MC, Berthon C, Berthon L., Boubals N, Burdet F, Duchesne MT, Guilbaud P, Mabille N, Petit S, Zorz N, Complexation of Ln(III) and Am(III) with the hydrosoluble TEDGA: speciation and thermodynamics studies. Procedia Chem. 7,20?26:2012.

    View Article           
  20. AMBER-11 manual,

    View Article           
  21. ?zp?nar, GA, Peukert W, Clark T, An improved generalized AMBER force field (GAFF) for urea. J. Mol.Model. 16,1427-1440:2010. PMid:20162312

    View Article      PubMed/NCBI     
  22. Baaden M, Berny F, Wipff G,Madic C, A molecular dynamics and quantum mechanics study of M3+ lanthanide cation solvation by acetonitrile: the role of cation size, counterions and polarization effects investigated. J. Phys. Chem. A 104,7659-7671:2000.

    View Article           
  23. Chemsketch-12.0,

    View Article           
  24. Avagadro package, . avogadro.openmolecules.net/

    View Article           
  25. Humphrey W, Dalke A, Schulten K, Visual Molecular Dynamics, J. Molec. Graphics 14, 33-38:1996. 00018-5

    View Article           
  26. Ansari SA, Pathak PN, Manchanda VK, Hussain M, Prasad AK, Parmar VS, N,N,N',N',-tetraoctyldiglycolamide (TODGA):a promising extractant for actinide-partitioning from high-level waste (HLW), Solvent Extr. Ion Exch. 23,463?479:2005.

    View Article           
  27. Sasaki Y, Sugo Y, Suzuki S, Shoichi S, The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3?n-dodecane system, Solvent Extr. Ion Exch. 19,91-103:2001.

    View Article           
  28. Nayak PK, Kumaresan R, Venkatesan KA, Rajeswari S, Subramanian GGS, Antony MP, Vasudeva Rao PR, Single-cycle separation of americium (III) from simulated high-level liquid waste using tetra-bis(2-ethylhexyl)diglycolamide and bis(2-ethylhexyl)phosphoric acid solution, J. Environ. Chem. Eng. 1, 559?565:2013.

    View Article           
  29. Kannan S, Moody MA, Barnes CL, Duval PB, Lanthanum(III) and uranyl(VI) diglycolamide complexes: synthetic precursors and structural studies involving nitrate complexation, Inorg. Chem. 47,4691-4695:2011. PMid:18442234

    View Article      PubMed/NCBI     

Journal Recent Articles